Generalize then Adapt

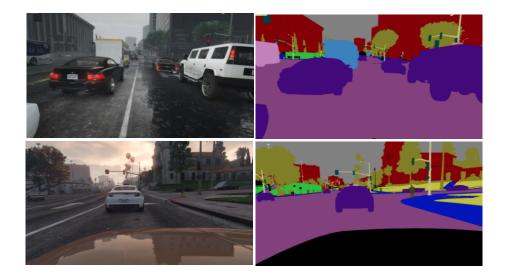
Source-Free Domain Adaptive Semantic Segmentation JN Kundu, A Kulkarni, A Singh, V Jampani, RV Babu

Presenters: Aditya, Sourish, Pranav CS 8803 Machine Learning with Limited Supervision

Domain Adaptation

Source dataset (GTA) Images and GT Target dataset (Cityscapes) Images and GT

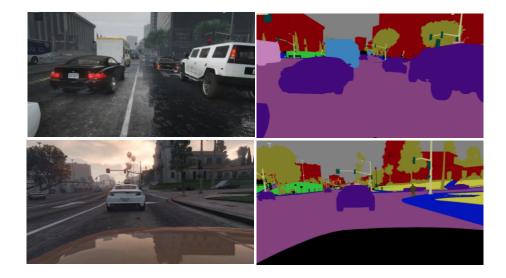
Domain Adaptation



Source dataset (GTA) Images and GT Target dataset (Cityscapes) Images and GT

Can we use the models learned on the source dataset to improve performance on the target dataset on the same task?

Unsupervised Domain Adaptation



Source dataset (GTA) Images and GT Target dataset (Cityscapes) Images

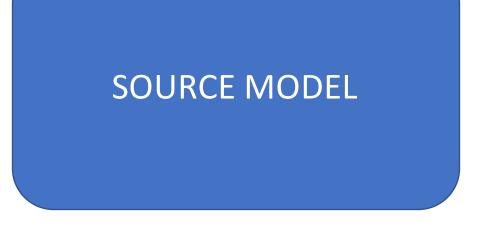
Unsupervised Domain Adaptation

Source dataset (GTA) Images and GT

Target dataset (Cityscapes) Images

Can we do Domain Adaptation without target labels?

Source-free Unsupervised Domain Adaptation



Source dataset (GTA) Images and GT

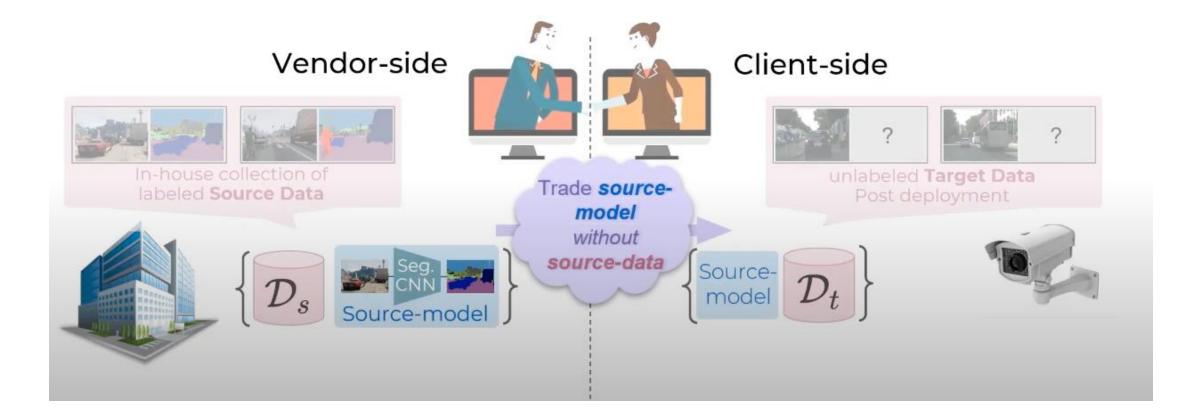
Target dataset (Cityscapes) Images

Source-free Unsupervised Domain Adaptation

Source dataset (GTA) Images and GT Target dataset (Cityscapes) Images

Can we do Unsupervised Domain Adaptation without having concurrent access to source / target data?

Why is SFUDA needed?



Related Work

Feature Space DA

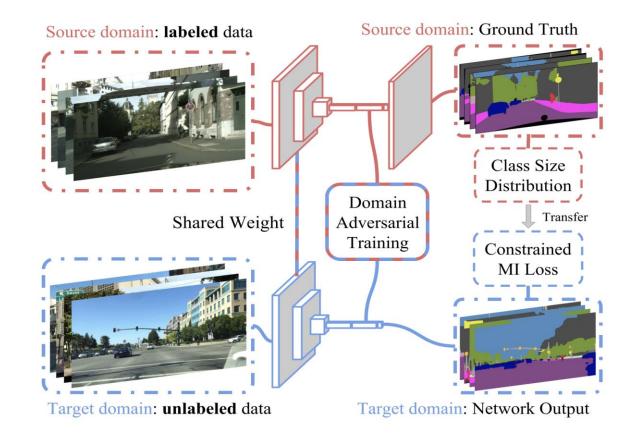


Figure 2: Overview of our pixel-level adversarial and constraint-based adaptation.

Image space DA

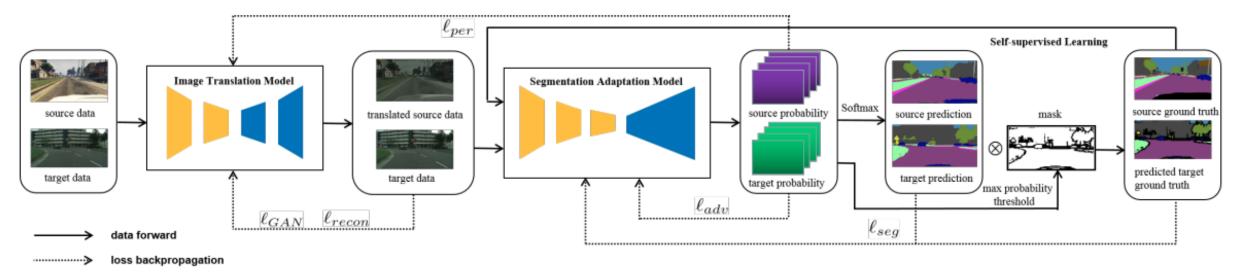


Figure 3: Network architecture and loss function

Multi-source DA

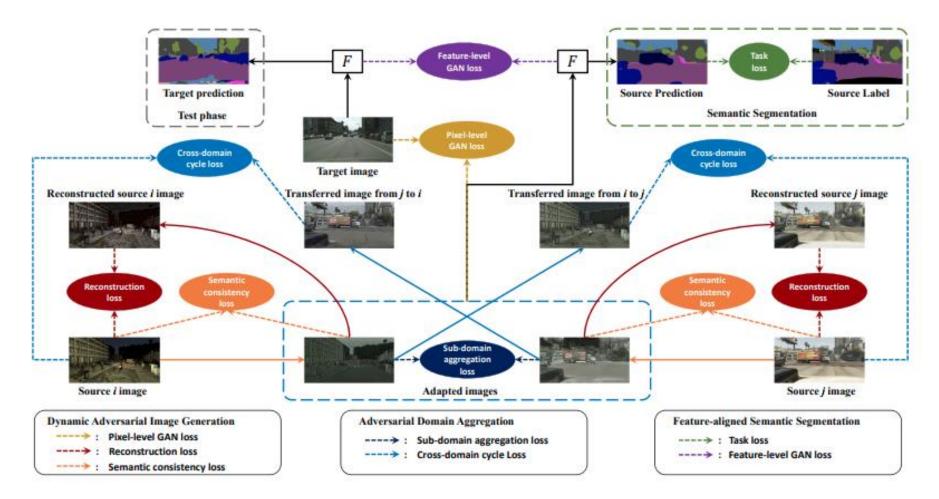


Figure 1: The framework of the proposed Multi-source Adversarial Domain Aggregation Network (MADAN). The colored solid arrows represent generators, while the black solid arrows indicate the segmentation network F. The dashed arrows correspond to different losses.

Others

Source-free

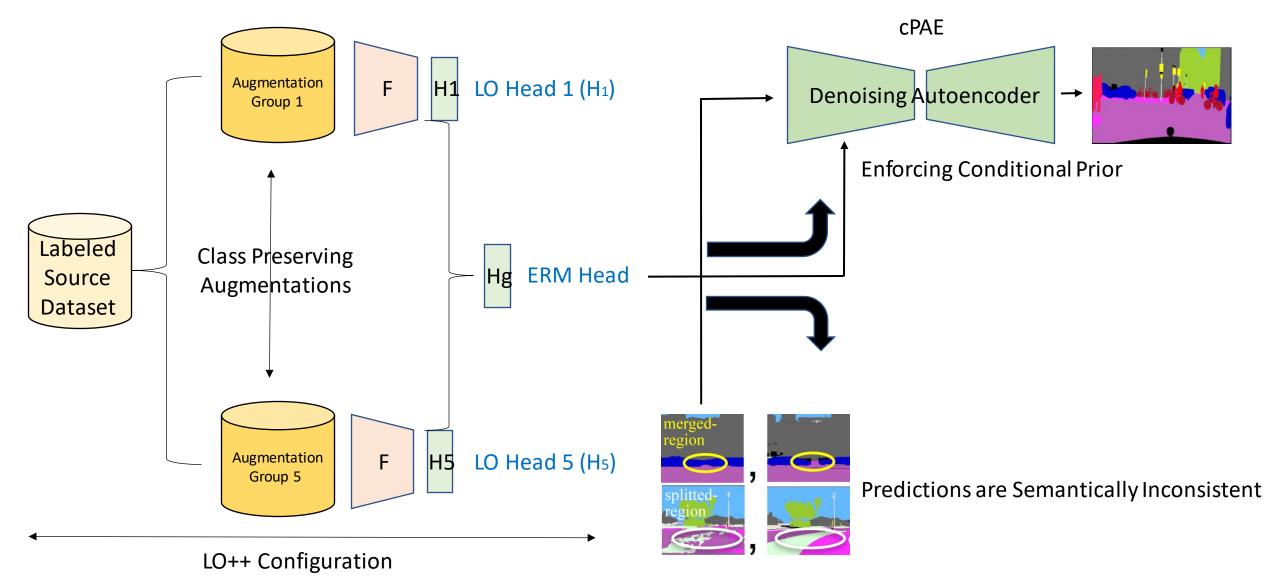
- Unsupervised loss: Entropy minimization, class-ratio alignment
- Distillation, Self-supervision

Self-training

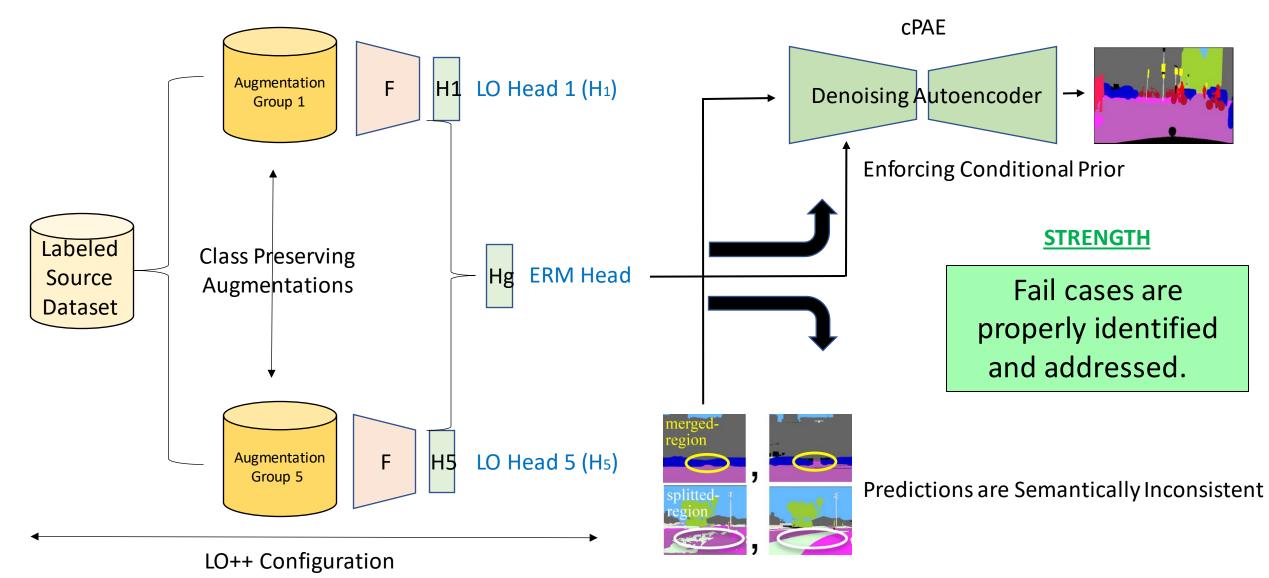
• Using highly confident pseudo-labels for target domain training

Approach

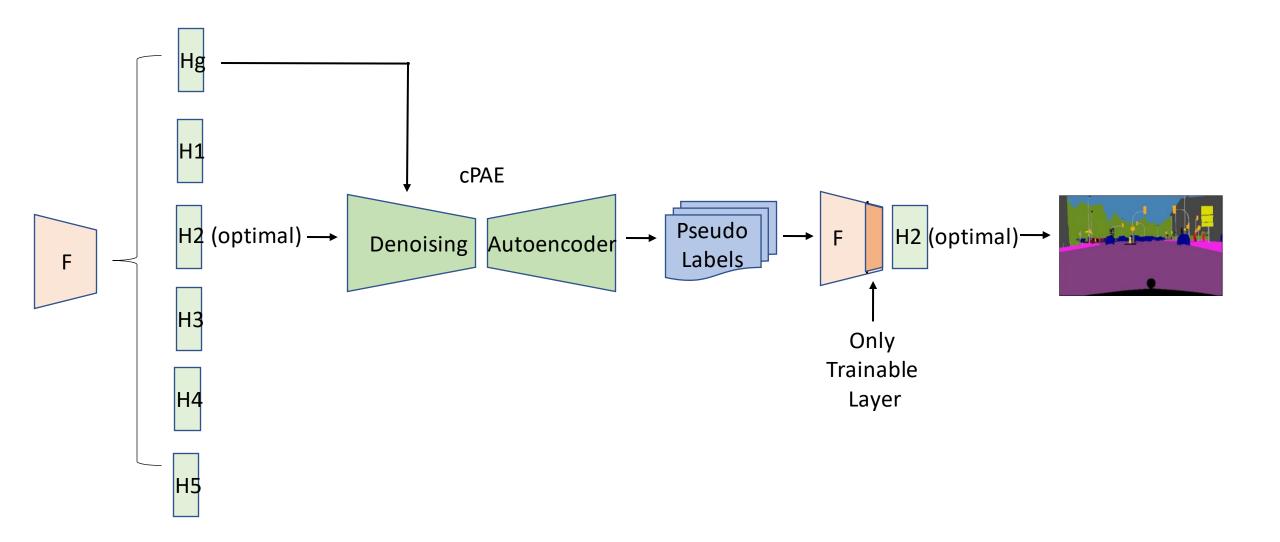
Approach – Vendor Strategy



Approach – Vendor Strategy

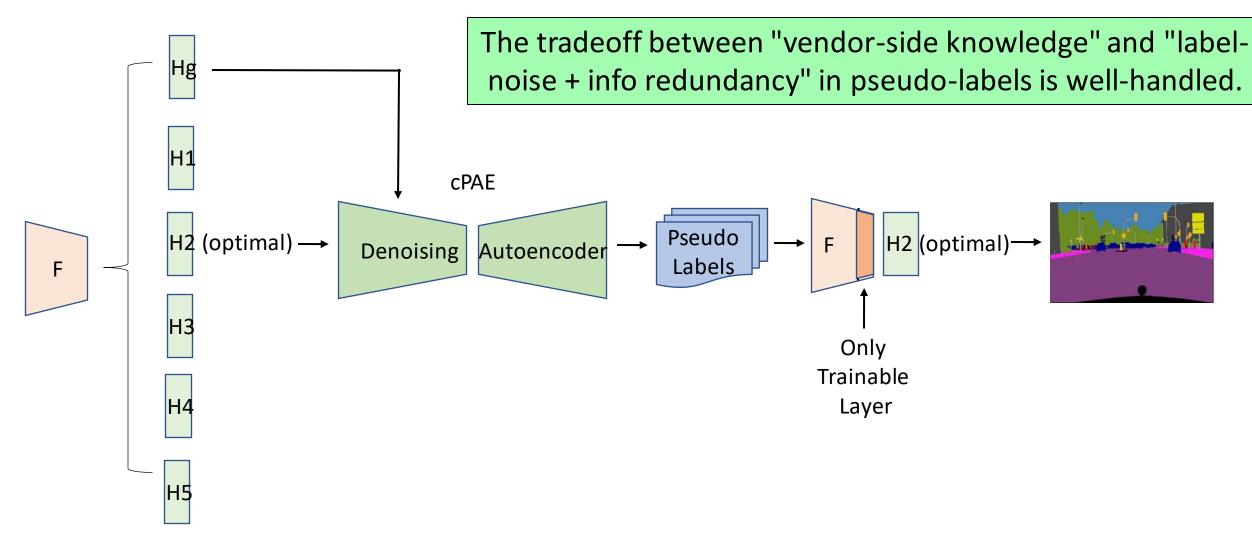


Approach – Client Strategy



Approach – Client Strategy

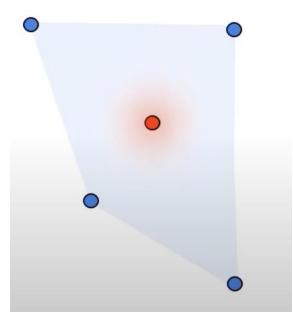
STRENGTH



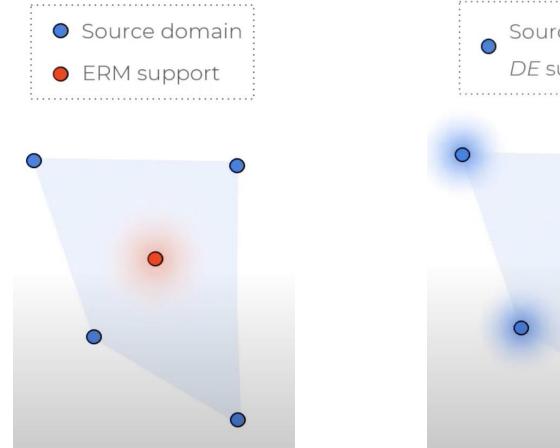
Approach - Class Preserving Augmentations

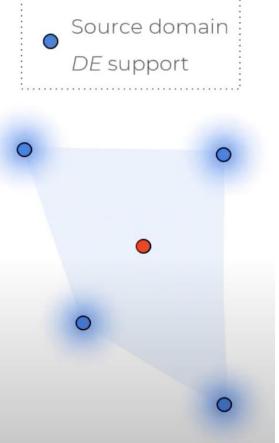
The selected AGs

Approach - Vendor Side Training Approaches

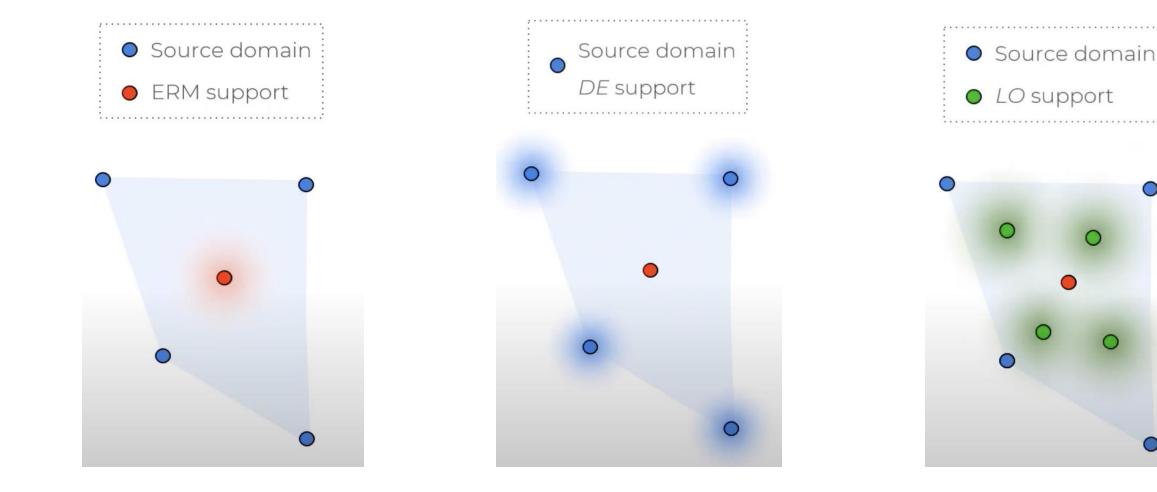


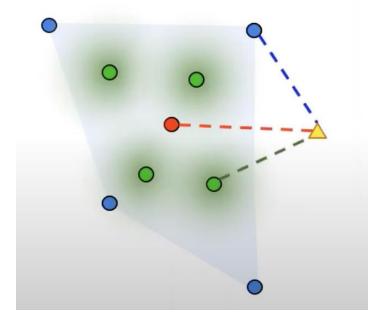
Approach - Vendor Side Training Approaches



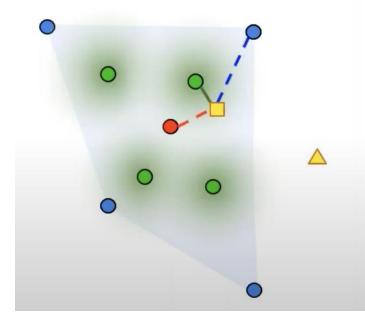


Approach - Vendor Side Training Approaches

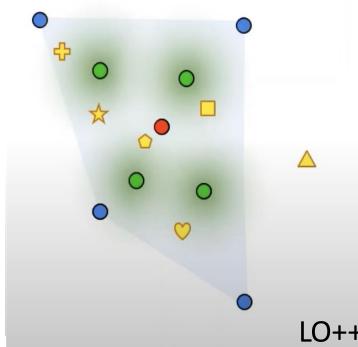




Target scenarios	Deployable vendor-side configuration		
	ERM	DE++	LO++
t_{j_1} : $igtriangleup$	Х	×	\checkmark

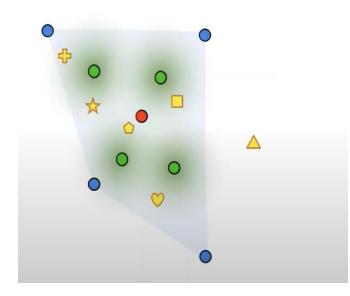


Target scenarios	Deployable vendor-side configuration		
	ERM	DE++	LO++
t_{j_1} : $ ightarrow$	×	×	\checkmark
t_{j_2} :	Х	×	\checkmark

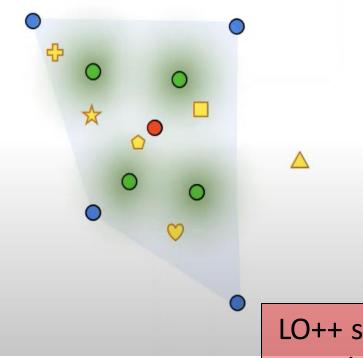


Target scenarios	Deployable vendor-side configuration		
	ERM	DE++	LO++
t_{j_1} : $ ightarrow$	×	×	\checkmark
t_{j_2} :	×	×	\checkmark
t_{j_3} : 🕂	×	\checkmark	×
t_{j_4} : \bigstar	×	×	\checkmark
t_{j_5} : 🔿	\checkmark	×	\checkmark
$t_{j_6}\colon igodot$	X	×	\checkmark

LO++ supports most target scenarios



Result 1. Consider DE++ hypothesis space \mathcal{A}^{DE++} , LO++ hypothesis space \mathcal{A}^{LO++} , and unseen target data \mathcal{D}_t . Then, $\epsilon_t(h \in \mathcal{A}^{LO++}) \leq \epsilon_t(h \in \mathcal{H}^{ERM})$ $\epsilon_t(h \in \mathcal{A}^{DE++}) \leq \epsilon_t(h \in \mathcal{H}^{ERM})$ (2)

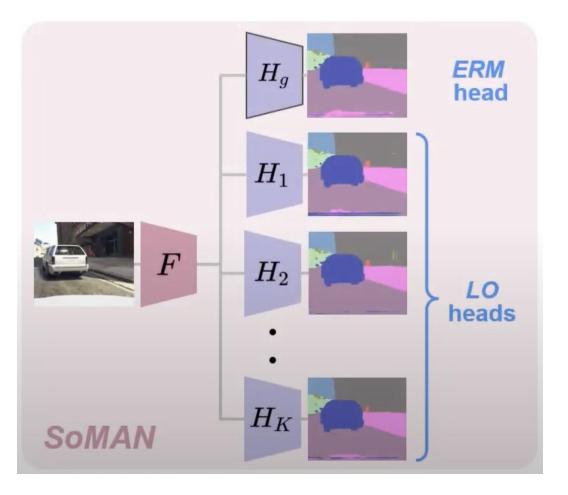


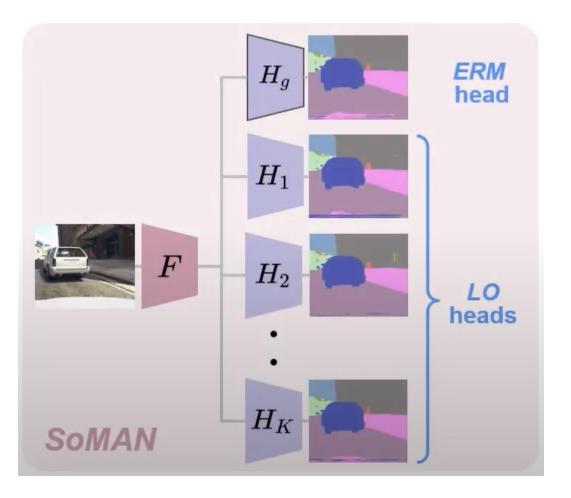
Target	Deployable vendor-side configuration		
scenarios	ERM	DE++	LO++
t_{j_1} : $ ightarrow$	×	×	\checkmark
t_{j_2} :	Х	×	\checkmark
t_{j_3} : 🗗	×	\checkmark	×
t_{j_4} : \bigstar	×	×	\checkmark
t_{j_5} : 🔿	\checkmark	×	\checkmark
$t_{j_6}\colon igodot$	X	×	\checkmark

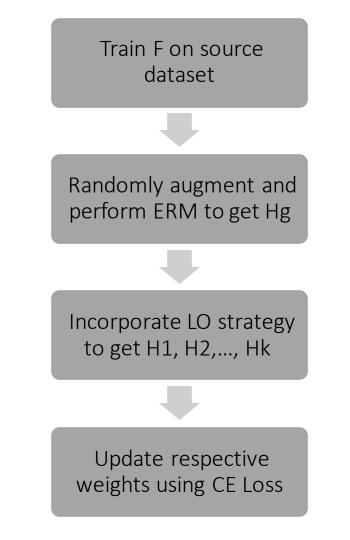
WEAKNESS

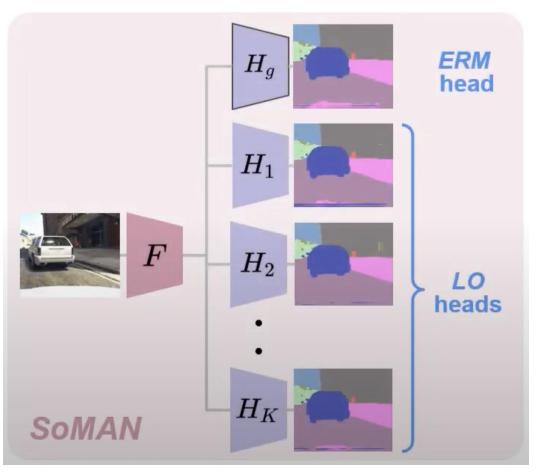
LO++ supports most target scenarios.

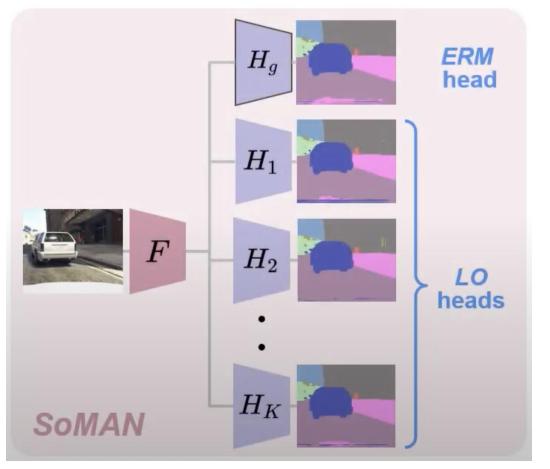
Is the justification correct?







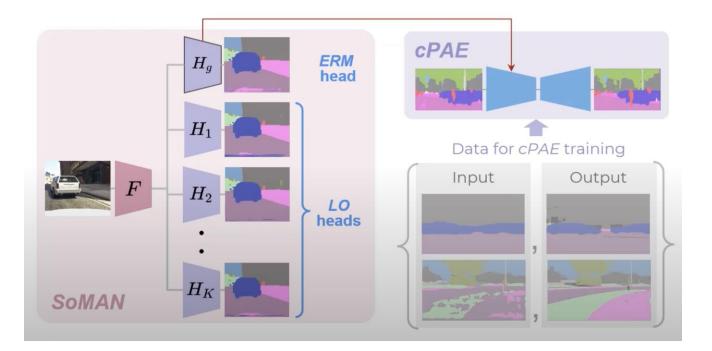




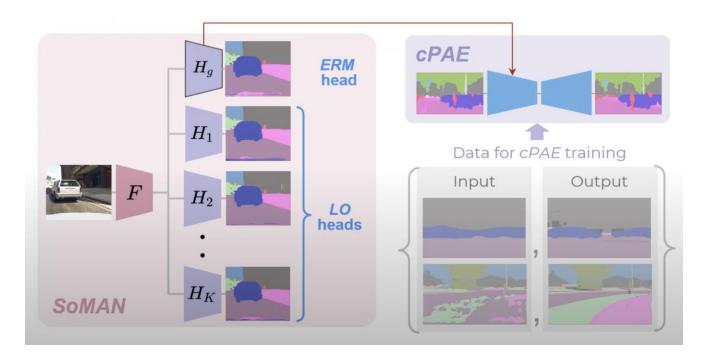
WEAKNESS

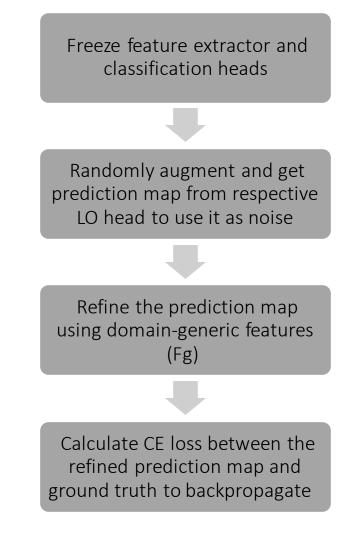
- Is this the optimal way of designing the architecture?
- Additional heads for
 DE supports can be inserted along with
 H1, H2,...,Hk and Hg to incorporate all the possible cases!
- As vendor-side training is a one-time work, the tradeoff between performance and additional computational overhead seems insignificant!

Approach – Vendor Side Training CPAE



Approach – Vendor Side Training CPAE





Paired-data for training CPAE

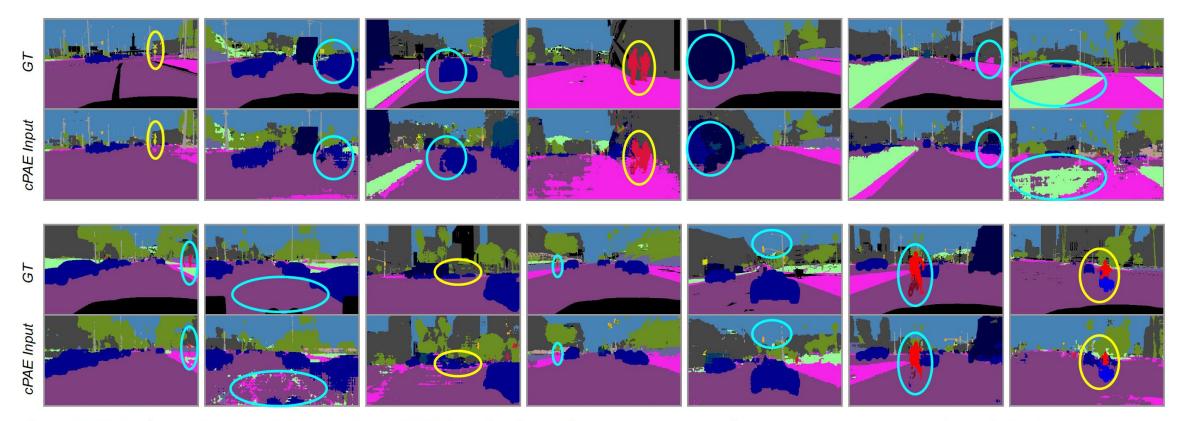
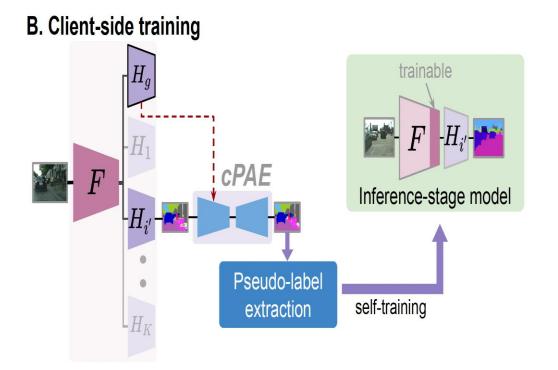
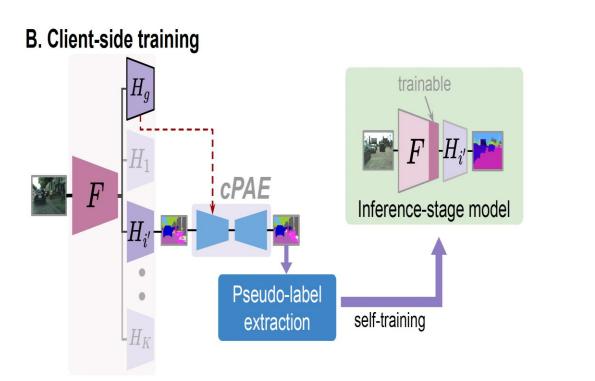


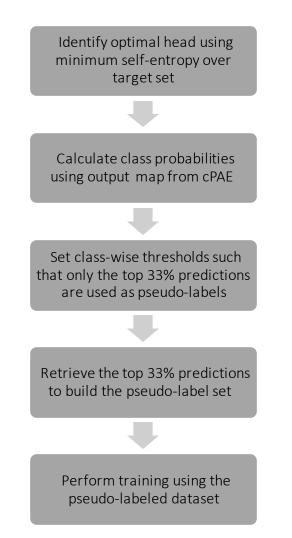
Figure 2. Paired samples for CPAE training. CPAE is trained as a denoising autoencoder to encourage structural regularity in segmentation predictions and alleviate merged-region (yellow circle) and splitted-region (blue circle) problems. *Best viewed in color*.

Approach – Client-Side Training



Approach – Client-Side Training





Experimental Setup

Experimental Setup – Network Architecture

SoMAN Architecture:

- Deeplabv2 w/ ResNet101
- FCN8s with VGG16

CPAE Architecture:

					-
	Layer	Input	Туре	Filter Stride Dilation	Output Size
	C_1	\hat{y}	Conv*	$7 \times 7,64 \mid 1 \mid$ -	$512\times1024\times64$
	C_2	C_1	Conv*	$3 \times 3, 128 2 $ -	$256\times512\times128$
	C_3	C_2	Conv*	$7 \times 7,128 \mid 1 \mid$ -	$256\times512\times128$
	C_4	C_3	Conv*	$3 \times 3,256 \mid 2 \mid$ -	$128\times256\times256$
н	C_5	C_4	Conv*	$7 \times 7,256 \mid 1 \mid$ -	$128\times256\times256$
Encoder	C_6	C_5	Conv*	$3 \times 3,512 \mid 2 \mid$ -	$64 \times 128 \times 512$
ince	C_7	$C_6, F_g(x)$		-	$64 \times 128 \times 2560$
щ	C_8	C_7	Dconv	$3 \times 3,512 \mid 1 \mid 2$	$64 \times 128 \times 512$
	C_9	C_7	Dconv	$3 \times 3,512 \mid 1 \mid 4$	$64 \times 128 \times 512$
	C_{10}	C_7	Dconv	$3 \times 3,512 \mid 1 \mid 8$	$64 \times 128 \times 512$
	C_{11}	C_7	Dconv	$3 \times 3,512 \mid 1 \mid 16$	$64 \times 128 \times 512$
	C_{12}	C_8, C_9, C_{10}, C_{11}	\oplus	-	$64 \times 128 \times 512$
	C_{13}	C_{12}	Conv+Tanh	$1 \times 1,512 \mid 1 \mid$ -	$64 \times 128 \times 512$
	C_{14}	C_{13}	Conv**	$3 \times 3,512 \mid 1 \mid$ -	$64\times128\times512$
	C_{15}	C_{14}	Conv*	$3 \times 3,512 \mid 1 \mid$ -	$64 \times 128 \times 512$
ler	C_{16}	C_{15}	Conv*	$7 \times 7,256 \mid 1 \mid$ -	$64 \times 128 \times 256$
Decoder	C_{17}	C_{16}	Tconv*	$3 \times 3,256 \mid 2 \mid$ -	$128\times256\times256$
De	C_{18}	C_{17}	Conv*	$7 \times 7,128 \mid 1 \mid$ -	$128\times256\times128$
	C_{19}	C_{18}	Tconv*	$3 \times 3,64 \mid 2 \mid$ -	$256 \times 512 \times 64$
	C_{20}	C_{19}	Conv	$7 \times 7, 19 \mid 1 \mid$ -	$256\times512\times19$
	Upsampling	C_{20}	Interpolation	-	$512\times1024\times19$

Experimental Setup -Datasets

- GTA5 dataset:
 - 24966 synthetic images with pixel-level semantic annotation

Experimental Setup -Datasets

- SYNTHIA dataset
 - 20,000+ HD images from video streams + 20,000+ HD images from snapshots
 - European style town, modern city, highway, and green areas

Experimental Setup -Datasets

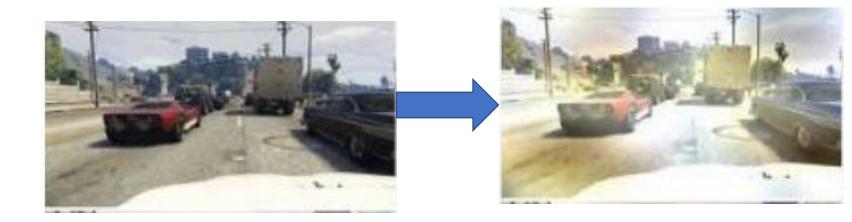
- Cityscapes dataset:
 - large-scale dataset stereo video sequences recorded in street
 - 50 different cities
 - high quality pixel-level annotations of 5000 frames + 20,000 weakly annotated frames.

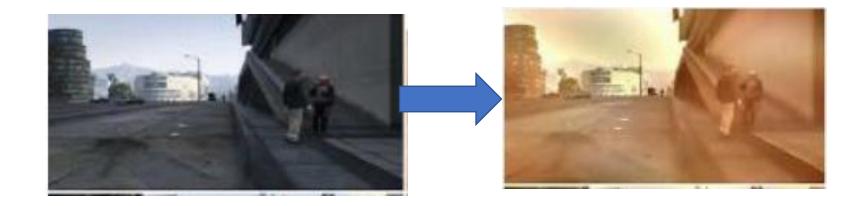
• Using equation :

$$x_{s_i} = \mathcal{T}_i(x_s) = \phi(f_y, f_i + \gamma_i f_s); \quad \gamma_i \in \mathbb{R}$$

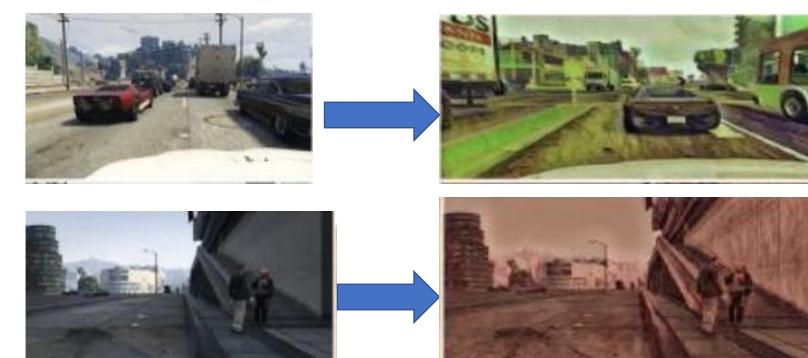
- 5 augmentations picked.
- An augmentation \mathcal{T}_i is picked, if $|\gamma_i| < 1$ in the above equation
- Alteration in image statistics -> style gap between the two domains

- Augmentation 1
 - Aug-A
 - Fourier transform

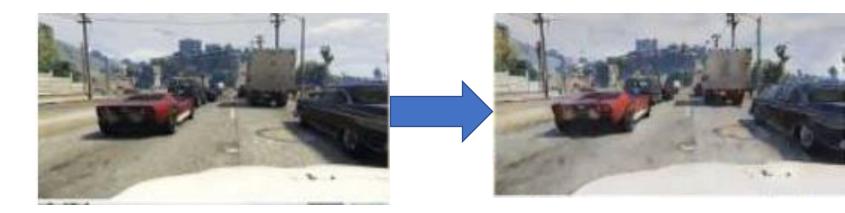




- Augmentation 2
 - Aug-B
 - Deep style transfer network for style randomization

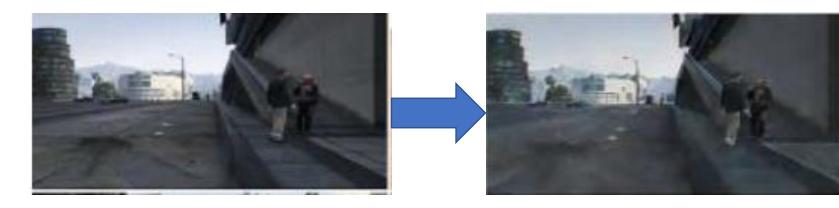


- Augmentation 3
 - Aug-C
 - AdalN



WEAKNESS

Domain shift : Non-intuitive



- Augmentation 4
 - Aug-D
 - Stylistic weather augmentations

- Augmentation 5
 - Aug-E
 - Cartoon augmentation

Results

Comparison with prior arts

Table 5. Quantitative evaluation on GTA5 \rightarrow Cityscapes. Performance on different segmentation architectures: A (DeepLabv2 ResNet-101), B (FCN8s VGG-16). SF indicates whether the method supports *source-free* adaptation. *Ours* (*V*) indicates use of our vendor-side AGs with prior art and * indicates reproduced by us using released code. We observe better or competitive performance on minority classes like motorcycle compared to non-source-free prior arts.

Method	Arch	SF	peot.	stidewalt	building	IPan	fence	Pole	ti dight	tsien	Vegetation	terrain	Ty.	Person	tider	car.	truck	b_{US}	train,	MolorCycle	bic bicke	mIoU
PLCA [12]	Α	×	84.0	30.4	82.4	35.3	24.8	32.2	36.8	24.5	85.5	37.2	78.6	66.9	32.8	85.5	40.4	48.0	8.8	29.8	41.8	47.7
CrCDA [8]	Α	×	92.4	55.3	82.3	31.2	29.1	32.5	33.2	35.6	83.5	34.8	84.2	58.9	32.2	84.7	40.6	46.1	2.1	31.1	32.7	48.6
PIT [19]	Α	×	87.5	43.4	78.8	31.2	30.2	36.3	39.9	42.0	79.2	37.1	79.3	65.4	37.5	83.2	46.0	45.6	25.7	23.5	49.9	50.6
TPLD [26]	Α	×	94.2	60.5	82.8	36.6	16.6	39.3	29.0	25.5	85.6	44.9	84.4	60.6	27.4	84.1	37.0	47.0	31.2	36.1	50.3	51.2
RPT [35]	Α	×	89.7	44.8	86.4	44.2	30.6	41.4	51.7	33.0	87.8	39.4	86.3	65.6	24.5	89.0	36.2	46.8	17.6	39.1	58.3	53.2
FADA [29]	Α	×	91.0	50.6	86.0	43.4	29.8	36.8	43.4	25.0	86.8	38.3	87.4	64.0	38.0	85.2	31.6	46.1	6.5	25.4	37.1	50.1
IAST [20]	Α	×	94.1	58.8	85.4	39.7	29.2	25.1	43.1	34.2	84.8	34.6	88.7	62.7	30.3	87.6	42.3	50.3	24.7	35.2	40.2	52.2
$Ours(V) + FADA^*$	Α	×	91.2	51.0	86.6	43.6	30.3	37.1	43.7	25.2	87.9	40.2	88.2	64.7	38.4	85.5	32.0	46.8	6.6	25.9	37.5	50.6
$Ours(V) + IAST^*$	Α	×	94.8	59.4	86.2	40.5	29.5	25.5	43.8	34.7	85.9	34.9	89.5	63.4	30.8	88.3	42.6	50.7	25.3	35.7	40.9	52.8
URMA [28]	Α	\checkmark	92.3	55.2	81.6	30.8	18.8	37.1	17.7	12.1	84.2	35.9	83.8	57.7	24.1	81.7	27.5	44.3	6.9	24.1	40.4	45.1
SRDA* [1]	Α	\checkmark	90.5	47.1	82.8	32.8	28.0	29.9	35.9	34.8	83.3	39.7	76.1	57.3	23.6	79.5	30.7	40.2	0.0	26.6	30.9	45.8
Ours (w/o CPAE)	Α	\checkmark	90.9	48.6	85.5	35.3	31.7	36.9	34.7	34.8	86.2	47.8	88.5	61.7	32.6	85.9	46.9	50.4	0.0	38.9	52.4	51.6
Ours (w/ cPAE)	Α	\checkmark	91.7	53.4	86.1	37.6	32.1	37.4	38.2	35.6	86.7	48.5	89.9	62.6	34.3	87.2	51.0	50.8	4.2	42.7	53.9	53.4
BDL [15]	В	×	89.2	40.9	81.2	29.1	19.2	14.2	29.0	19.6	83.7	35.9	80.7	54.7	23.3	82.7	25.8	28.0	2.3	25.7	19.9	41.3
LTIR [13]	В	×	92.5	54.5	83.9	34.5	25.5	31.0	30.4	18.0	84.1	39.6	83.9	53.6	19.3	81.7	21.1	13.6	17.7	12.3	6.5	42.3
LDR [30]	В	×	90.1	41.2	82.2	30.3	21.3	18.3	33.5	23.0	84.1	37.5	81.4	54.2	24.3	83.0	27.6	32.0	8.1	29.7	26.9	43.6
FADA [29]	В	×	92.3	51.1	83.7	33.1	29.1	28.5	28.0	21.0	82.6	32.6	85.3	55.2	28.8	83.5	24.4	37.4	0.0	21.1	15.2	43.8
PCEDA [32]	В	×	90.2	44.7	82.0	28.4	28.4	24.4	33.7	35.6	83.7	40.5	75.1	54.4	28.2	80.3	23.8	39.4	0.0	22.8	30.8	44.6
SFDA [17]	В	\checkmark	81.8	35.4	82.3	21.6	20.2	25.3	17.8	4.7	80.7	24.6	80.4	50.5	9.2	78.4	26.3	19.8	11.1	6.7	4.3	35.8
Ours (w/o CPAE)	В	\checkmark	90.1	44.2	81.7	31.6	19.2	27.5	29.6	26.4	81.3	34.7	82.6	52.5	24.9	83.2	25.3	41.9	8.6	15.7	32.2	43.4
Ours (w/ cPAE)	В	\checkmark	92.9	56.9	82.5	20.4	6.0	30.8	34.7	33.2	84.6	17.0	88.9	62.3	30.7	85.1	15.3	40.6	10.2	30.1	50.4	45.9

Comparison with prior arts

Table 6. Quantitative evaluation on SYNTHIA \rightarrow Cityscapes. Performance on different segmentation architectures: A (DeepLabv2 ResNet-101), B (FCN8s VGG-16). mIoU and mIoU* are averaged over 16 and 13 categories respectively. SF indicates whether the method supports *source-free* adaptation.

Method	Arch	SF	^{toad}	sidewalk	building	Wall*	fence*	Pole*	t-light	1.31gh	Vegetation	sf.	Derson	tider	c _{ar}	b_{ll_S}	thotor.cle	bi _{Cycle}	mIoU	mIoU*
CAG [34]	Α	×	84.8	41.7	85.5	-	-	-	13.7	23.0	86.5	78.1	66.3	28.1	81.8	21.8	22.9	49.0	-	52.6
APODA [31]	Α	×	86.4	41.3	79.3	-	-	-	22.6	17.3	80.3	81.6	56.9	21.0	84.1	49.1	24.6	45.7	-	53.1
PyCDA [16]	Α	×	75.5	30.9	83.3	20.8	0.7	32.7	27.3	33.5	84.7	85.0	64.1	25.4	85.0	45.2	21.2	32.0	46.7	53.3
TPLD [26]	Α	×	80.9	44.3	82.2	19.9	0.3	40.6	20.5	30.1	77.2	80.9	60.6	25.5	84.8	41.1	24.7	43.7	47.3	53.5
USAMR [37]	Α	×	83.1	38.2	81.7	9.3	1.0	35.1	30.3	19.9	82.0	80.1	62.8	21.1	84.4	37.8	24.5	53.3	46.5	53.8
RPL [36]	Α	Х	87.6	41.9	83.1	14.7	1.7	36.2	31.3	19.9	81.6	80.6	63.0	21.8	86.2	40.7	23.6	53.1	47.9	54.9
IAST [20]	Α	×	81.9	41.5	83.3	17.7	4.6	32.3	30.9	28.8	83.4	85.0	65.5	30.8	86.5	38.2	33.1	52.7	49.8	57.0
RPT [35]	Α	×	89.1	47.3	84.6	14.5	0.4	39.4	39.9	30.3	86.1	86.3	60.8	25.7	88.7	49.0	28.4	57.5	51.7	59.5
URMA [28]	Α	\checkmark	59.3	24.6	77.0	14.0	1.8	31.5	18.3	32.0	83.1	80.4	46.3	17.8	76.7	17.0	18.5	34.6	39.6	45.0
Ours (w/o CPAE)	Α	\checkmark	89.0	44.6	80.1	7.8	0.7	34.4	22.0	22.9	82.0	86.5	65.4	33.2	84.8	45.8	38.4	31.7	48.1	55.5
Ours (w/ cPAE)	Α	\checkmark	90.5	50.0	81.6	13.3	2.8	34.7	25.7	33.1	83.8	89.2	66.0	34.9	85.3	53.4	46.1	46.6	52.0	60.1
PyCDA [16]	В	×	80.6	26.6	74.5	2.0	0.1	18.1	13.7	14.2	80.8	71.0	48.0	19.0	72.3	22.5	12.1	18.1	35.9	42.6
SD [6]	В	Х	87.1	36.5	79.7	-	-	-	13.5	7.8	81.2	76.7	50.1	12.7	78.0	35.0	4.6	1.6	-	43.4
FADA [29]	В	×	80.4	35.9	80.9	2.5	0.3	30.4	7.9	22.3	81.8	83.6	48.9	16.8	77.7	31.1	13.5	17.9	39.5	46.0
BDL [15]	В	×	72.0	30.3	74.5	0.1	0.3	24.6	10.2	25.2	80.5	80.0	54.7	23.2	72.7	24.0	7.5	44.9	39.0	46.1
PCEDA [32]	В	×	79.7	35.2	78.7	1.4	0.6	23.1	10.0	28.9	79.6	81.2	51.2	25.1	72.2	24.1	16.7	50.4	41.1	48.7
Ours (w/o cPAE)	В	\checkmark	88.5	45.4	79.8	2.8	2.2	27.4	18.4	25.4	82.4	83.6	55.9	12.1	72.8	25.6	3.5	12.9	40.0	46.7
Ours (w/ cPAE)	В	\checkmark	89.9	48.8	80.9	2.9	2.5	28.1	19.5	26.2	83.7	84.9	57.4	17.8	75.6	28.9	4.3	17.2	41.3	48.9

Results - Ablations

Table 2. Ablation study for $GTA5 \rightarrow Cityscapes$. * indicates 3 rounds of self-training after the mentioned method. The client-side ablations begin from the best vendor-side model.

	Method	mIoU
	Standard single-source*	44.4
Vandansida	Multi-source ERM*	47.6
Vendor-side	Domain-experts++ (DE++)*	48.0
	Leave-one-out++ (LO++)*	51.6
	w/o cPAE	51.6
Client side	+ Inference via CPAE	52.5
Client-side	w/ cPAE	53.4
	+ Inference via CPAE	54.2

Results - Ablations

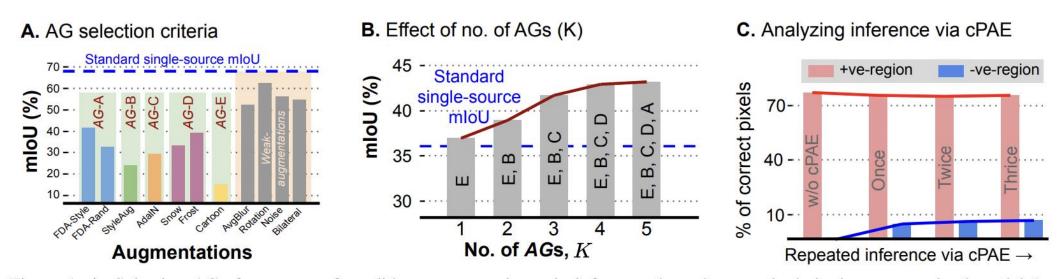


Figure 1. A. Selecting AGs from a set of candidate augmentations via inference through a standard single-source trained model (see Sec. 4.1). B. Performance of vendor-side trained models varying K on Cityscapes. Performance saturates as K reaches 5 (see Sec. 4.1). C. Impact of CPAE on correctly (+ve) and incorrectly (-ve) predicted regions on Cityscapes for a given model (see Sec. 4.3).

Results – Cross Dataset generalization

Table 5. Evaluating generalization and compatibility to online adaptation for $GTA5 \rightarrow Cityscapes$ models on Foggy-Cityscapes and NTHU-Cross-City datasets. 0.005, 0.01, and 0.02 indicate the levels of fog in the dataset and GT indicates ground truth segmentation maps. * indicates experiment reproduced by us using the released code of prior arts. We also show standard Cityscapes results for reference.

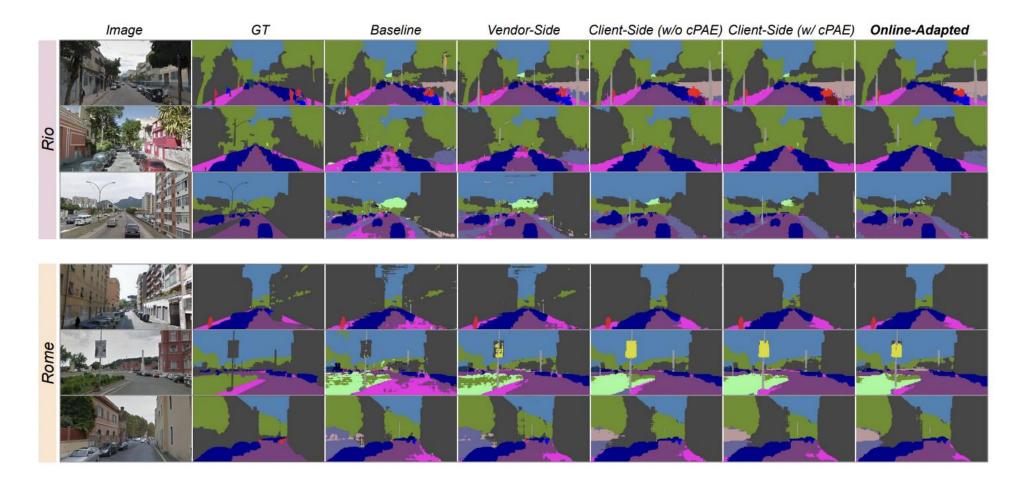
	#	Method	Access to	Citys	Foggy	oggy-Cityscapes (19-class)				NTHU-Cross-City (13-class)				
	"		GTA5 Citysc.	19-class	13-class	0.005	0.01	0.02	Avg.	Rio	Rome	Taipei	Tokyo	Avg.
Vendor-side	1.	BDL (w/o ST) [41]	$\checkmark \checkmark (\text{no GT})$	43.3	53.2	40.4	36.8	30.3	<u>35.8</u>	38.9	42.2	42.2	41.2	<u>41.1</u>
(GTA5)	2.	FDA* (w/o ST) [83]	√ √ (no GT)	42.7	51.9	42.1	40.3	35.3	<u>39.2</u>	42.2	42.3	37.5	42.3	<u>41.0</u>
(GIAS)	3.	Ours (vendor-side)	√ X	43.1	51.5	43.6	42.4	38.3	<u>41.4</u>	47.0	48.7	43.4	44.5	<u>45.9</u>
	4.	ASN [68]	√ √ (no GT)	42.4	51.1	41.0	38.0	31.7	<u>36.9</u>	41.8	44.5	37.5	41.9	41.4
Client-side	5.	MSL [5]	√ √ (no GT)	46.4	54.5	44.3	40.9	34.2	<u>39.8</u>	44.4	47.0	45.6	44.7	<u>45.4</u>
$(\rightarrow Citysc.)$	6.	BDL [41]	√ √ (no GT)	48.5	57.7	46.0	42.6	36.3	<u>41.6</u>	44.1	47.1	47.5	44.3	<u>45.7</u>
(→Cityse.)	7.	FDA [<mark>83</mark>]	√ √ (no GT)	48.8	57.8	47.6	45.2	39.1	<u>44.0</u>	47.8	46.6	42.7	48.1	<u>46.3</u>
_	8.	Ours (client-side)	$\times \checkmark (\text{no GT})$	53.4	61.4	51.7	48.9	42.3	<u>47.6</u>	47.1	47.7	45.7	46.5	<u>46.7</u>
Online Adapt.	9.	CBST [95]	$\times \checkmark (w/GT)$	-	-	-	-	-	-	52.2	53.6	50.3	48.8	51.2
1	10.	MSL [5]	$\times \checkmark (w/GT)$	-	-	-	-	-	-	53.3	54.5	50.6	50.5	<u>52.2</u>
(→FoggyC / →NTHU)	11.	CSCL [13]	$\times \checkmark (w/GT)$	-	-	-	-	-	-	53.8	54.8	51.4	51.0	<u>52.7</u>
	12.	Ours (client-side)	$\times \mid \times$	-	-	53.6	51.1	45.9	<u>50.2</u>	54.3	55.0	51.6	51.3	<u>53.0</u>

Results – Analysis

Table 3. Empirical evaluation of Result 1 for vendor-side SoMAN heads with mIoU for various target scenarios. LO indicates leaveone-out head while ERM is the global head. 0.005, 0.01, and 0.02 indicate the levels of fog in the dataset. We observe that different heads are optimal for different target domains.

Head	Cityscapes	Foggy	-Citys	capes	NTHU-Cross-City						
	enyseupes	0.005	0.01	0.02	Rio	Rome	Taipei	Tokyo			
ERM	43.1	43.6	42.4	38.3	47.0	48.7	43.4	44.5			
LO-A	42.4	43.0	41.6	36.7	45.4	48.9	43.2	45.4			
LO-B	42.2	42.2	40.7	36.1	49.0	47.7	42.1	46.5			
LO-C	43.1	43.0	41.7	37.8	48.1	48.6	43.8	46.7			
LO-D	43.5	43.4	41.7	37.0	45.6	47.9	43.9	45.3			
LO-E	43.2	43.9	42.6	37.9	45.5	47.0	43.6	45.9			

Qualitative Results



Qualitative Results

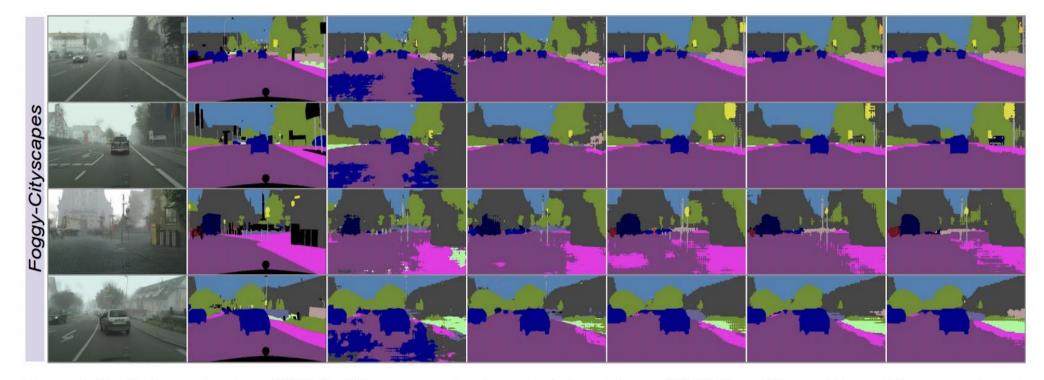


Figure 4. Qualitative evaluation of $GTA5 \rightarrow Cityscapes$ and online adapted models on NTHU-Cross-City and Foggy-Cityscapes datasets. The performance generally improves from vendor-side to client-side to online-adapted model. *Best viewed in color*.

Qualitative Results

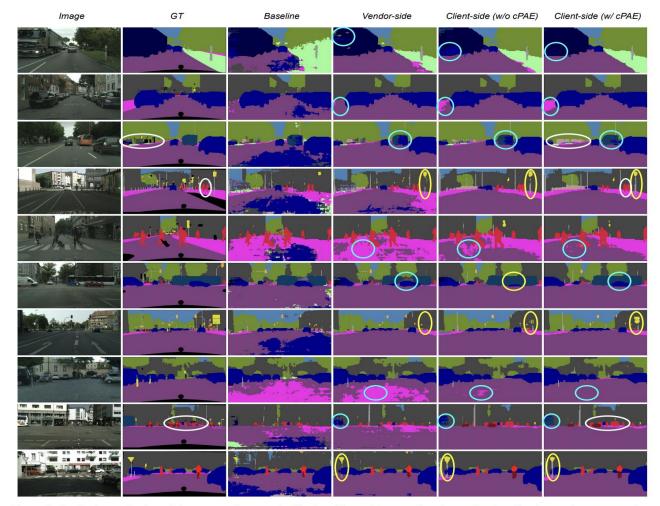


Figure 5. Qualitative evaluation of the proposed approach. Vendor-side model generalizes better than baseline but performs worse than client-side due to the domain gap. Inculcating prior knowledge from CPAE structurally regularizes the predictions and overcomes merged-region (yellow circle) and splitted-region (blue circle) problems. Some failure cases are also shown (white circle). *Best viewed in color.*

Strengths, Weaknesses, and Interesting Ideas

• The only method (that we are aware of) that does adaptation friendly training at the vendor end, making it scalable

- The only method (that we are aware of) that does adaptation friendly training at the vendor end, making it scalable
- Relevant problem statement with real-world applications

- The only method (that we are aware of) that does adaptation friendly training at the vendor end, making it scalable
- Relevant problem statement with real-world applications
- Performs better than other competing **non-source-free methods**

- The only method (that we are aware of) that does adaptation friendly training at the vendor end, making it scalable
- Relevant problem statement with real-world applications
- Performs better than other competing **non-source-free methods**
- Fail-cases (merged and split regions) properly identified and addressed

- The only method (that we are aware of) that does adaptation friendly training at the vendor end, making it scalable
- Relevant problem statement with real-world applications
- Performs better than other competing **non-source-free methods**
- Fail-cases (merged and split regions) properly identified and addressed
- The tradeoff between "vendor-side knowledge" and "label-noise + info redundancy" in pseudo-labels is well-handled

- The only method (that we are aware of) that does adaptation friendly training at the vendor end, making it scalable
- Relevant problem statement with real-world applications
- Performs better than other competing **non-source-free methods**
- Fail-cases (merged and split regions) properly identified and addressed
- The tradeoff between "vendor-side knowledge" and "label-noise + info redundancy" in pseudo-labels is well-handled
- Notation table and pseudo-code for the training steps clarifies the implementation details

Weaknesses

- The reasoning behind why LO++ outperforms DE++ is not justifiable from a diagram.
- The "Result 1" in the paper is intuition-based as well as without any reference.
- The exclusion of DE++ heads from the SoMAN network is wrongly justified under computational overhead.
- There is no discussion on error accumulation due to self-training
- Although code is available, the vendor-side implementations are missing (trained models are provided).

Weaknesses

- It is not an easy-to-understand paper, a lot of new terminology is introduced when it could have been done without
 - CPAE It's a denoising encoder, the section that explains CPAE is overly complicated
 - ERM overcomplicates the paper
- Nit All of us were confused on what prior **arts** were

Interesting Ideas

- Generation of AGs to avoid the requirement of multi-domain labeled data on the vendor side
- The ability to tailor source/vendor training to support downstream domain adaptation is pretty interesting

Questions?