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Can we use the models learned on the source dataset to 
improve performance on the target dataset on the same task?



Unsupervised Domain Adaptation

Source dataset (GTA)
Images and GT

Target dataset (Cityscapes)
Images



Unsupervised Domain Adaptation
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Images

Can we do Domain Adaptation without target labels?



SOURCE MODEL
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SOURCE MODEL

Source-free Unsupervised Domain Adaptation

Source dataset (GTA)
Images and GT

Target dataset (Cityscapes)
Images

Can we do Unsupervised Domain Adaptation without having 
concurrent access to source / target data? 



Why is SFUDA needed?



Related Work



Feature Space DA



Image space DA



Multi-source DA



Others

Source-free
• Unsupervised loss: Entropy minimization, class-ratio alignment
• Distillation, Self-supervision

Self-training
• Using highly confident pseudo-labels for target domain training



Approach
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Fail cases are 
properly identified 
and addressed.

STRENGTH

Predictions are Semantically Inconsistent
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The tradeoff between "vendor-side knowledge" and "label-
noise + info redundancy" in pseudo-labels is well-handled.

STRENGTH



Approach - Class Preserving Augmentations
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Approach – Analysis of Hypothesis Supports

LO++ supports most target scenarios.
Is the justification correct?

WEAKNESS



Approach – SoMAN Training

LO++ Configuration



Approach – SoMAN Training

LO++ Configuration

Train F on source 
dataset

Randomly augment and 
perform ERM to get Hg

Incorporate LO strategy 
to get H1, H2,…, Hk

Update respective 
weights using CE Loss
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Approach – SoMAN Training

LO++ Configuration

• Is this the optimal way
of designing the architecture?

• Additional heads for 
DE supports can be inserted along 

with 
H1, H2,…,Hk and Hg

to incorporate
all the possible cases!

• As vendor-side training is a
one-time work, the tradeoff between 

performance and additional 
computational overhead seems 

insignificant!

WEAKNESS



Approach – Vendor Side Training CPAE



Approach – Vendor Side Training CPAE

Freeze feature extractor and 
classification heads

Randomly augment and get 
prediction map from respective 

LO head to use it as noise

Refine the prediction map 
using domain-generic features 

(Fg)

Calculate CE loss between the 
refined prediction map and 

ground truth to backpropagate



Paired-data for training CPAE



Approach – Client-Side Training



Approach – Client-Side Training
Identify optimal head using 
minimum self-entropy over 

target set

Calculate class probabilities 
using output map from cPAE

Set class-wise thresholds such 
that only the top 33% predictions 

are used as pseudo-labels

Retrieve the top 33% predictions 
to build the pseudo-label set

Perform training using the 
pseudo-labeled dataset



Experimental Setup



Experimental Setup – Network Architecture

SoMAN Architecture:

• Deeplabv2 w/ 
ResNet101

• FCN8s with VGG16

CPAE Architecture:



Experimental Setup -
Datasets

• GTA5 dataset:
• 24966 synthetic images with 

pixel-level semantic annotation



Experimental Setup -
Datasets

• SYNTHIA dataset
• 20,000+ HD images from video 

streams + 20,000+ HD images 
from snapshots

• European style town, modern 
city, highway, and green areas



Experimental Setup -
Datasets

• Cityscapes dataset:
• large-scale dataset - stereo video 

sequences recorded in street

• 50 different cities

• high quality pixel-level 
annotations of 5000 frames + 
20,000 weakly annotated frames.



Experimental Setup – Augmentation Groups

• Using equation :

• 5 augmentations picked.

• An augmentation is picked, if in the above equation

• Alteration in image statistics -> style gap between the two domains



Experimental Setup – Augmentation Groups

• Augmentation 1
• Aug-A

• Fourier transform



Experimental Setup – Augmentation Groups

• Augmentation 2
• Aug-B

• Deep style transfer network for style randomization



Experimental Setup – Augmentation Groups

• Augmentation 3
• Aug-C
• AdaIN

Domain shift : Non-intuitive

WEAKNESS



Experimental Setup – Augmentation Groups

• Augmentation 4
• Aug-D
• Stylistic weather augmentations



Experimental Setup – Augmentation Groups

• Augmentation 5
• Aug-E

• Cartoon augmentation



Results



Comparison with prior arts
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Results - Ablations



Results - Ablations



Results – Cross Dataset generalization



Results – Analysis



Qualitative Results
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Strengths, Weaknesses, 
and Interesting Ideas
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Strengths

• The only method (that we are aware of) that does adaptation friendly 
training at the vendor end, making it scalable

• Relevant problem statement with real-world applications

• Performs better than other competing non-source-free methods

• Fail-cases (merged and split regions) properly identified and 
addressed

• The tradeoff between "vendor-side knowledge" and "label-noise + 
info redundancy" in pseudo-labels is well-handled

• Notation table and pseudo-code for the training steps clarifies the 
implementation details



Weaknesses

• The reasoning behind why LO++ outperforms DE++ is not justifiable 
from a diagram.

• The "Result 1" in the paper is intuition-based as well as without any 
reference.

• The exclusion of DE++ heads from the SoMAN network is wrongly 
justified under computational overhead.

• There is no discussion on error accumulation due to self-training

• Although code is available, the vendor-side implementations are 
missing (trained models are provided).



Weaknesses

• It is not an easy-to-understand paper, a lot of new terminology 
is introduced when it could have been done without
• CPAE – It’s a denoising encoder, the section that explains CPAE is overly 

complicated

• ERM – overcomplicates the paper

• Nit – All of us were confused on what prior arts were



Interesting Ideas

• Generation of AGs to avoid the requirement of multi-domain labeled 
data on the vendor side

• The ability to tailor source/vendor training to support downstream 
domain adaptation is pretty interesting



Questions?
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